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We continued our discussion of Special Relativity.  Einstein made two postulates: 

1)  If S is an inertial reference frame and if a second frame S’ moves with constant 
velocity relative to S, then S’ is also an inertial reference frame. 

2) The speed of light (in vacuum) has the same value c in every direction in all inertial 
reference frames. 

We considered the measurement of length (ℓ) in two different inertial reference frames.  
This led to the length contraction result: ℓ = ℓ0/𝛾, where ℓ0 is the ‘proper length’ of an object, 
namely the length when the object is at rest in your reference frame.  All observers in other states 
of motion measure a contracted length. 

We discussed the inadequacy of the Galilean transformation of coordinates between two 
different inertial reference frames S and S’.  For example the translation of x-coordinates 
between two reference frames moving at speed 𝑉 in the x-direction is 𝑥′ = 𝑥 − 𝑉𝑉.  But the two 
observers cannot even agree on time, so this equation is of little use.  We derived the relativistic 
version of this transformation between S and S’ moving at speed 𝑉 in the x-direction, making 
use of length contraction to arrive at the Lorentz transformation: 

 𝑥′ = 𝛾(𝑥 − 𝑉𝑉) 

 𝑦′ = 𝑦 

 𝑧′ = 𝑧 

 𝑉′ = 𝛾(𝑉 − 𝑥𝑉/𝑐2) 

Note that these equations reduce to the Galilean version in the limit 𝑉
𝑐
≪ 1. These equations 

show how a single event (in space-time) is described in two different inertial reference frames 
that are moving at a constant speed 𝑉 relative to each other in the 𝑥-direction.  

We applied the Lorentz transformation to the apparent paradox of a 100-cm-long 
relativistic snake moving across a table (at 𝑉

𝑐
= 0.6) that has two knives bouncing on the table 

simultaneously at a distance 100 cm apart.  From the perspective of reference frame S at rest 
with respect to the table, the snake will be Lorentz contracted and easily fit between the falling 
knives.  Naively, from the snake’s perspective in frame S’ the two knives appear to be only 80 
cm apart, meaning that it will surely be cut in two by the two falling knives.  This argument 
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implicitly assumes that the knives also appear to bounce simultaneously from the snake’s 
perspective.  The resolution of this paradox is a careful evaluation of the locations in space and 
time of the two chopping knives in each reference frame using the Lorentz transformation.  We 
found that in the snake’s frame of reference the first knife just misses its tail, but the second 
knife falls 2.5 ns before the first and at a location of 125 cm in its frame, missing the snake 
altogether.  Hence the paradox is resolved.  However the results seem unsettling because the 
events that were simultaneous in S are no longer simultaneous in S’.  In addition, the two knives 
appear to be too far apart in S’.  These issues arise because we are used to dealing with situations 
where information travels much faster (at the speed of light!) compared to the motions of the 
objects of interest, and the distances covered in time ∆𝑉 are very small compared to 𝑐∆𝑉.  Hence 
we can get a ‘global’ view of the system and ascribe a single universal time coordinate to the 
motion.  This is no longer the case when objects are moving at speeds approaching light speed.  
It takes significant time for information to travel between two spatially separated points, and 
these delays must be incorporated into our description of the motion.  To handle this, we will 
now develop a description of events in a four-dimensional space-time, and learn how to calculate 
the correct “invariant interval” between two events in space-time. 

We deduced the relativistic velocity addition formula from the differential form of the 
(linear) Lorentz transformation.  Velocities of objects measured in frames S’ and S moving at 
relative speed 𝑉 in the x-direction are related as 𝑣𝑥′ = 𝑣𝑥−𝑉

1−𝑉𝑣𝑥/𝑐2
, and 𝑣𝑦′ = 𝑣𝑦

𝛾(1−𝑉𝑣𝑥/𝑐2), 𝑣𝑧
′ =

𝑣𝑧
𝛾(1−𝑉𝑣𝑥/𝑐2).  For example if a spaceship is approaching earth at a speed of 𝑉

𝑐
= 0.8 and launches a 

light beam towards us (𝑣𝑥′ = 𝑐) then we measure the speed of that light as not 1.8 𝑐, but as 
𝑣𝑥 = 𝑐, in accordance with the second postulate of relativity.  The velocity addition formulas 
thus enforce the speed limit of the universe! 

It was noted that the Lorentz transformation has the appearance of a rotation in a 4-
dimensional space spanned by the coordinates 𝑥1, 𝑥2, 𝑥3 (the re-named ordinary Cartesian 
coordinates) and a new coordinate 𝑥4 = 𝑐𝑉.  The Lorentz transformation can be written in 

“rotational” form as 𝑥′(4) = Λ� 𝑥(4), where 𝑥(4) = �

𝑥1
𝑥2
𝑥3
𝑥4

� is the space-time 4-vector [which can 

also be written as 𝑥(4) = (�⃗�, 𝑐𝑉), for example] and the ‘rotation’ matrix representing the Lorentz 

transformation is Λ� = �

𝛾 0
0 1

0 −𝛽𝛾
0 0

0 0
−𝛽𝛾 0

1 0
0 𝛾

�.  This is not the most general Lorentz 

transformation.  It is a special case called a “boost”, which corresponds to a pair of reference 
frames moving relative to each other along one of the coordinate axes (𝑥1).  Note that we use the 
superscript 𝑥(4) to denote 4-vectors and the vector sign (�⃗�) to denote ordinary 3-vectors. 
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 One can define the rapidity as an angle obeying the equation tanh(𝜑) = 𝛽, where 𝛽 is 
the normalized relative velocity between the two reference frames, as always.  With this 
definition, the Lorentz transformation matrix can be written as    

Λ� = �

cosh (𝜑) 0
0 1

0 −sinh (𝜑)
0 0

0 0
−sinh (𝜑) 0

1 0
0 cosh (𝜑)

�, which bears a strong resemblance to a rotation matrix in 

3-space, except for the use of hyperbolic functions (rather than trigonometric functions) and an 
extra minus sign.  One can think of the Lorentz transformation as a rotation of the 4-space 
coordinate axes that are used to describe a specific physical event.  One nice feature of the 
rapidity arises in velocity addition.  Velocities do not simply add, as we know from the equations 
above, but must be combined in a rather peculiar way.  On the other hand, rapidities do add 
linearly; if we add two velocities v1 and v2 along the 𝑥1 axis to get the new velocity u, we must 
use the formula 𝑢 = v1+v2

1+v1v2/𝑐2
, whereas for rapidity one simply has 𝑢 = tanh (φ1 + φ2).  In 

other words, adding two relativistic velocities is like two consecutive rotations through angles φ1 
and φ2. 


